16 research outputs found

    Minimal Involutive Bases

    Full text link
    In this paper we present an algorithm for construction of minimal involutive polynomial bases which are Groebner bases of the special form. The most general involutive algorithms are based on the concept of involutive monomial division which leads to partition of variables into multiplicative and non-multiplicative. This partition gives thereby the self-consistent computational procedure for constructing an involutive basis by performing non-multiplicative prolongations and multiplicative reductions. Every specific involutive division generates a particular form of involutive computational procedure. In addition to three involutive divisions used by Thomas, Janet and Pommaret for analysis of partial differential equations we define two new ones. These two divisions, as well as Thomas division, do not depend on the order of variables. We prove noetherity, continuity and constructivity of the new divisions that provides correctness and termination of involutive algorithms for any finite set of input polynomials and any admissible monomial ordering. We show that, given an admissible monomial ordering, a monic minimal involutive basis is uniquely defined and thereby can be considered as canonical much like the reduced Groebner basis.Comment: 22 page

    Gr\"obner Bases and Generation of Difference Schemes for Partial Differential Equations

    Full text link
    In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gr\"obner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gr\"obner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Abstract Minimal involutive bases

    No full text
    In this paper, we present an algorithm for construction of minimal involutive polynomial bases which are GroÈbner bases of the special form. The most general involutive algorithms are based on the concept of involutive monomial division which leads to partition of variables into multiplicative and non-multiplicative. This partition gives thereby the self-consistent computational procedure for constructing an involutive basis by performing non-multiplicative prolongations and multiplicative reductions. Every specific involutive division generates a particular form of involutive computational procedure. In addition to three involutive divisions used by Thomas, Janet and Pommaret for analysis of partial differential equations we define two new ones. These two divisions, as well as Thomas division, do not depend on the order of variables. We prove noetherity, continuity and constructivity of the new divisions that provides correctness and termination of involutive algorithms for any finite set of input polynomials and any admissible monomial ordering. We show that, given an admissible monomial ordering, a monic minimal involutive basis is uniquely defined and thereby can be considered as canonical much like the reduced GroÈbner basis. # 1998 IMACS/Elsevier Science B.V
    corecore